

Efecto del genotipo y plano nutricional sobre el peso del huevo y la longitud corporal en pollitos campero INTA

Sindik, M.^{1*}, Sanz, P.¹, Revidatti, F.¹, Fernández, R.¹, Michel, M.¹

1 Cátedra Producción de aves-Facultad de Ciencias Veterinarias. UNNE. Sgto. Cabral 2139 - (3400) Corrientes, Argentina *msindik@hotmail.com

Introducción

La evaluación de la calidad del pollito de un día de vida incluye un conjunto de indicadores que ayudan a predecir su rendimiento potencial en el ciclo de producción, lo que ha transformado a esta práctica en una medida rutinaria de manejo. Entre los métodos objetivos de evaluación de la calidad del pollito se utilizan el registro del peso y la longitud corporal. Este trabajo de investigación, analiza el efecto de dos programas de asignación de nutrientes (estándar y estándar+10) aplicados durante el crecimiento en pollas de la población materna ES del pollo Campero INTA y del híbrido producto del cruzamiento entre los genotipos A*ES, sobre el peso del huevo y longitud del pollito al nacimiento, en condiciones estandarizadas de incubación.

Material y Métodos

El ensayo se llevó a cabo en el Centro de Multiplicación de Aves de la EEA Corrientes del INTA. Se trabajó con un lote de 400 gallinas, la mitad de las cuales pertenecen a la población sintética materna del pollo campero INTA denominada ES y la otra mitad al híbrido producto del cruzamiento entre las poblaciones sintéticas maternas A x ES, a razón de 200 aves por cada genotipo alojadas en cuatro boxes para cada nivel nutricional durante la etapa de recría. Los huevos incubables obtenidos de las reproductoras de ambos genotipos y programas de alimentación, correspondientes a las semanas 42 a 45 del ciclo de las reproductoras fueron sometidos a las mismas condiciones de incubación.

Resultados

Tabla 1. Análisis de la varianza de peso corporal, peso de huevo y longitud del pollito según genotipo.

	Genotipo C		Genotipo ES			
	Media	D.E.	Media	D.E.	F	p valor
PCG (g)	3.382 ^(a)	77,45	3.331 ^(a)	58,16	1,11	0,33
PH (g)	64,60 ^(b)	0,35	63,76 ^(a)	0,49	7,9	0,03
PBB (g)	41,44 ^(a)	0,98	41,30 ^(a)	1,15	0,03	0,86
LBB (mm)	181,41 ^(a)	0,49	180,71 ^(a)	0,88	2,06	0,20

Tabla 2. Análisis de la varianza de peso corporal, peso de huevo, peso y longitud del pollito según nivel nutricional.

	Estándar		Estándar +10%			
	Media	D.E.	Media	D.E.	F	p valor
PCG (g)	3.351 ^(a)	77,34	3.363 ^(a)	71,05	0,05	0,83
PH (g)	64,34 ^(a)	0,54	64,02 ^(a)	0,68	0,55	0,48
PBB (g)	41,50 ^(a)	0,95	41,24 ^(a)	1,16	0,12	0,74
LBB (mm)	180,88 ^(a)	0,90	181,27 ^(a)	0,68	0,46	0,52
CVLBB (%)	2,92 ^(a)	0,09	2,47 ^(b)	0,16	23,51	0,002
ULBB (%)	73,13 ^(b)	3,95	81,25 ^(a)	3,40	9,73	0,02

^{*}Coeficiente de variación de la longitud del pollito

^{*}Porcentaje de uniformidad de la longitud del pollito

Conclusión

El cruzamiento entre estos dos genotipos maternos cerrados de pollo campero INTA produce mejoras en la producción de huevos.